17gotowe.doc

(537 KB) Pobierz

wil

Radosław Burcek

zespół

6

data

6.12.2010

grupa

8

Badanie pola magnetycznego za pomocą hallotronu

nr ćwiczenia

17

ocena

 

1. Wprowadzenie

 

Zastosowany przez Halla układ doświadczalny przedstawiłem na poniższym rysunku.

 

W jednorodnym przewodniku, płynie prąd elektryczny w kierunku oznaczonym strzałką. Kiedy  przewodnik ten umieścimy w polu magnetycznym prostopadłym do kierunku prądu między punktami , leżącymi naprzeciwko siebie po obu stronach przewodnika, pojawia się napięcie elektryczne, które można wykryć woltomierzem. Znak tego napięcia zwanego napięciem Halla zmienia się, jeżeli zmieniamy kierunek prądu I albo kierunek pola magnetycznego B. Wartość napięcia Halla okazuje się być proporcjonalna do wartości indukcji magnetycznej B i natężenia prądu I.

                                          Siła Lorentza zaczyna działać na nośniki prądu  po włączeniu pola magnetycznego. Jest skierowana prostopadle doi do wektora indukcji B. Spowoduje ona zakrzywianie toru cząstek, więc na jednym z boków próbki wytworzy się nadmiar elektronów, będzie naładowany ujemnie przeciwny dodatnio. Wytworzy się pole elektryczne prostopadłe do kierunku przepływu prądu, a zatem wytworzy się siła elektrostatyczna i będzie rosnąć do czasu zrównania się z siłą Lorentza kierunek siły elektrostatycznej jest przeciwny do kierunku

siły Lorentza. Wpływ obu sił na ruch nośników kompensuje się.

 

Napięcie Halla:

n –koncentracja nośników prądu o ładunku q

h – grubość  próbki

I – natężenie prądu przepływającego przez próbkę

B – wartość indukcji pola magnetycznego

- stała Halla.

 

              Efekt Halla jest podstawą działania elementu elektronicznego zwanego hal­lotronem. Hallotrony wykorzystuje się przede wszystkim do wykrywania pola magnetycznego i pomiaru indukcji magnetycznej, zwłaszcza w maszynach elektrycznych.

Ponadto mogą być zastosowane m. in.

a)do pomiaru natężeń silnych prądów stałych,

b)mocy prądów stałych, zmiennych i szybkozmiennych,

c)jako elementy komputerów,

d)w urządzeniach przekształcających prąd stały na zmienny.

 

              Aby uzyskać dużą wartość stałej y do wykonania hallotronów stosuje się najczęściej cienkie warstwy z półprzewodników typu n naparowane na cera­miczne podłoże. Wykorzystywane są następujące materiały: german, krzem. antymonek indu, arsenek indu, tellurek rtęci.

Wykonane z tego samego materiału hallotrony nie zawsze mają identyczne .rametry. Dlatego każdy hallotron posiada indywidualną charakterystykę.

Trudno jest praktycznie tak umieścić elektrody do pomiaru napięcia Halla, aby znajdowały się na jednej powierzchni ekwipotencjalnej. W związku z tym, na­wet w nieobecności pola magnetycznego, między tymi elektrodami istnieje zazwyczaj pewne napięcie , zwane napięciem asymetrii, proporcjonalne do nat­ężenia prądu zasilającego hallotron. Mierzone napięcie wynosi zatem:

 

                                                       

 

 

 

2. Wykonanie ćwiczenia.

 

zad. 1

Wyznaczamy zależność napięcia Halla od natężenia prądu zasilającego hallotron w stałym polu magnetycznym.

 

Is  = 1,20[A]

 

IH [mA]

UR [V]

U[V]

UH=U-UR[V]

1

6,800

0,504

0,556

0,052

2

6,067

0,442

0,490

0,048

3

5,550

0,404

0,446

0,042

4

5,110

0,374

0,414

0,040

5

4,593

0,338

0,374

0,036

6

4,150

0,307

0,339

0,032

7

3,649

0,267

0,295

0,028

8

2,968

0,217

0,240

0,023

9

2,451

0,180

0,199

0,019

10

1,855

0,137

0,151

0,014

 

 

 

 

 

 

 

zad. 2

Wyznaczamy zależność napięcia Halla od natężenia prądu zasilającego solenoid.

 

IH0 =[4,892±0,001] [mA]

...
Zgłoś jeśli naruszono regulamin