INTRODUCTION This is wimlib version 1.5.1 (October 2013). wimlib is a C library for creating, modifying, extracting, and mounting files in the Windows Imaging Format (WIM files). These files are normally created by using the `imagex.exe' utility on Windows, but wimlib is distributed with a free implementation of ImageX called "wimlib-imagex" for both UNIX-like systems and Windows. INSTALLATION To install wimlib and wimlib-imagex on Windows you simply need to download and extract the ZIP file containing the latest binaries from the SourceForge page (http://sourceforge.net/projects/wimlib/), which you may have already done. To install wimlib and wimlib-imagex on UNIX-like systems (with Linux being the primary supported and tested platform), you must compile the source code, which is also available at http://sourceforge.net/projects/wimlib/. Alternatively, check if a package has been prepared for your Linux distribution. Example files for Debian and RPM packaging are in the debian/ and rpm/ directories. WIM FILES A Windows Imaging (WIM) file is an archive designed primarily for archiving Windows filesystems. However, it can be used on other platforms as well, with some limitations. Like some other archive formats such as ZIP, files in WIM archives may be compressed. WIM files support two compression formats: LZX and XPRESS. Both are supported by wimlib. A WIM file consists of one or more "images". Each image is an independent top-level directory structure and is logically separate from all other images in the WIM. Each image has a name as well as a 1-based index in the WIM file. To save space, WIM archives automatically combine all duplicate files across all images. A WIM file may be either stand-alone or split into multiple parts. Split WIMs are read-only and cannot be modified. IMAGEX IMPLEMENTATION wimlib itself is a C library, and it provides a documented public API (See: http://wimlib.sourceforge.net) for other programs to use. However, it is also distributed with a command-line program called "wimlib-imagex" that uses this library to implement an imaging tool similar to Microsoft's ImageX. wimlib-imagex supports almost all the capabilities of Microsoft's ImageX as well as additional capabilities. wimlib-imagex works on both UNIX-like systems and Windows, although some features differ between the platforms. Run `wimlib-imagex' with no arguments to see an overview of the available commands and their syntax. For additional documentation: * If you have installed wimlib-imagex on a UNIX-like system, you will find further documentation in the man pages; run `man wimlib-imagex' to get started. * If you have downloaded the Windows binary distribution, you will find the documentation for wimlib-imagex in PDF format in the "doc" directory, ready for viewing with any PDF viewer. Please note that although the PDF files are converted from UNIX-style "man pages", they do document Windows-specific behavior when appropriate. COMPRESSION RATIO wimlib (and wimlib-imagex) can create XPRESS or LZX compressed WIM archives. Currently, the XPRESS compression ratio is slightly better than that provided by Microsoft's software, while the LZX compression ratio is approaching that of Microsoft's software but is not quite there yet. Running time is as good as or better than Microsoft's software, especially with multithreaded compression, available in wimlib v1.1.0 and later. The following tables compare the compression ratio and performance for creating a compressed x86_64 Windows PE image. Note: these timings were done on Windows 7 so that the times would be fully comparable; however, wimlib-imagex may have even better performance on Linux. Table 1. WIM size XPRESS Compression LZX Compression wimlib-imagex (v1.4.0): 165,301,379 bytes 155,254,385 bytes Microsoft imagex.exe: 167,212,939 bytes 149,973,212 bytes Table 2. Time to create WIM XPRESS Compression LZX Compression wimlib-imagex (v1.4.0, 2 threads): 18 sec 51 sec Microsoft imagex.exe: 25 sec 93 sec NTFS SUPPORT WIM images may contain data, such as alternate data streams and compression/encryption flags, that are best represented on the NTFS filesystem used on Windows. Also, WIM images may contain security descriptors which are specific to Windows and cannot be represented on other operating systems. wimlib handles this NTFS-specific or Windows-specific data in a platform-dependent way: * In the Windows version of wimlib and wimlib-imagex, NTFS-specific and Windows-specific data are supported natively. * In the UNIX version of wimlib and wimlib-imagex, NTFS-specific and Windows-specific data are ordinarily ignored; however, there is also special support for capturing and extracting images directly to/from unmounted NTFS volumes. This was made possible with the help of libntfs-3g from the NTFS-3g project. For both platforms the code for NTFS capture and extraction is complete enough that it is possible to apply an image from the "install.wim" contained in recent Windows installation media (Vista, Windows 7, or Windows 8) directly to a NTFS filesystem, and then boot Windows from it after preparing the Boot Configuration Data. In addition, a Windows installation can be captured (or backed up) into a WIM file, and then re-applied later. WINDOWS PE A major use for wimlib and wimlib-imagex is to create customized images of Windows PE, the Windows Preinstallation Environment, on either UNIX-like systems or Windows without having to rely on Microsoft's software and its restrictions and limitations. Windows PE is a lightweight version of Windows that can run entirely from memory and can be used to install Windows from local media or a network drive or perform maintenance. It is the operating system that runs when you boot from the Windows installation media. You can find Windows PE on the installation DVD for Windows Vista, Windows 7, or Windows 8, in the file `sources/boot.wim'. Windows PE can also be found in the Windows Automated Installation Kit (WAIK), which is free to download from Microsoft, inside the `WinPE.cab' file, which you can extract natively on Windows, or on UNIX-like systems if you install either the `cabextract' or `p7zip' programs. In addition, Windows installations and recovery partitions frequently contain a WIM containing an image of the Windows Recovery Environment, which is similar to Windows PE. A shell script `mkwinpeimg' is distributed with wimlib on UNIX-like systems to ease the process of creating and customizing a bootable Windows PE image. DEPENDENCIES This section documents the dependencies of wimlib and the programs distributed with it, when building for a UNIX-like system from source. If you have downloaded the Windows binary distribution of wimlib and wimlib-imagex then all dependencies were already included and this section is irrelevant. * libxml2 (required) This is a commonly used free library to read and write XML files. You likely already have it installed as a dependency for some other program. For more information see http://xmlsoft.org/. * libfuse (optional but highly recommended) Unless configured with --without-fuse, wimlib requires a non-ancient version of libfuse to be installed. Most Linux distributions already include this, but make sure you have the libfuse package installed, and also libfuse-dev if your distribution distributes header files separately. FUSE also requires a kernel module. If the kernel module is available it will automatically be loaded if you try to mount a WIM file. For more information see http://fuse.sourceforge.net/. FUSE is also available for FreeBSD. * libntfs-3g (optional but highly recommended) Unless configured with --without-ntfs-3g, wimlib requires the library and headers for libntfs-3g version 2011-4-12 or later to be installed. Versions dated 2010-3-6 and earlier do not work because they are missing the header xattrs.h (and the file xattrs.c, which contains functions we need). libntfs-3g version 2013-1-13 is compatible only with wimlib 1.2.4 and later. * OpenSSL / libcrypto (optional) wimlib can use the SHA1 message digest code from OpenSSL instead of compiling in yet another SHA1 implementation. (See LICENSE section.) * cdrkit (optional) * mtools (optional) * syslinux (optional) * cabextract (optional) The `mkwinpeimg' shell script will look for several other programs depending on what options are given to it. Depending on your Linux distribution, you may already have these programs installed, or they may be in the software repository. Making an ISO filesystem requires `mkisofs' from `cdrkit' (http://www.cdrkit.org). Making a disk image requires `mtools' (http://www.gnu.org/software/mtools) and `syslinux' (http://www.syslinux.org). Retrieving files from the Windows Automated Installation Kit requires `cabextract' (http://www.cabextract.org.uk). CONFIGURATION This section documents the most important options that may be passed to the "configure" script when building from source: --without-ntfs-3g If...
witkomp