elf3(2).pdf
(
400 KB
)
Pobierz
COLLOQUIUM MATHEMATICUM
T
1
t
L
2
t
1
·
82
α
α
0 < α < 2
α = 2
α
83
k≥3
{1, . . . , k}
[0, 1)
T
(X,B, )
T
L
2
(X,B, )
U
T
(f ) = f◦T
T (f )
f◦T
C(T )
T
(X,B, )
T
U (L
2
(X,B, ))
T
σ
A⊂B
T
T
(X/A,A, |
A
)
T|
A
A
{T
n
T
: n∈Z}
C(T )
(q
n
)
T
q
n
→Id
T
S
(Y,C, ν)
T
S
T×S
̺
(X×Y,B⊗C)
̺
X
̺
Y
̺
X
= ̺|
X
=
̺
Y
= ̺|
Y
= ν
T
S
J(T, S)
T×S
(X×Y,B⊗C, ̺)
(T×S, ̺)
J
e
(T, S)
̺
f⊗g d̺ =
Φ
̺
(f )g dν
X×Y
Y
J(T, S)
L
2
(X,B, )
L
2
(Y,C, ν)
J(T, S)
U
T
U
S
Φ : L
2
(X,B, )→L
2
(Y,C, ν)
Φ(1
X
) = 1
Y
Φ
∗
(1
Y
) = 1
X
Φ = Φ
̺
̺(A×B) =
B
Φ(1
A
) dν
A∈B
B∈C
B(L
2
(X,B, ), L
2
(Y,C, ν))
J(T, S)
84
J(T, S)
J(T, S)
J(T, S)
⊗ν
Π
X,Y
(f ) =
X
f d
R
(Z,D, η)
Φ
̺
∈J(T, S)
Φ
κ
∈J(S, R)
Φ
κ
◦Φ
̺
∈J(T, R)
T
R
κ◦̺
J
2
(T )
J
2
(T )
S = T
J(T, T )
J
e
(T, T )
W∈C(T )
W
(A×B)
= (A∩W
−1
B)
T
W
∈J
2
(T )
W = T
n
T
T
⊗
Id
X
T
A⊂B
λ
A
λ(A×B) =
E(1
A
|A)E(1
B
|A) d(|
A
)
X/A
A
1
⊂A
T|
A
A
1
T
A
1
T
S
J
e
(T, S) ={⊗ν}
J(T, S) ={⊗ν}
R
⊥
T
S
R
R
R
⊥
R
⊥
R
⊥
R
⊥
M(R
⊥
)
T
(X,B, )
̺∈J
2
(T )
̺◦̺∈J
2
(T )
(T×T, ̺)
B⊗{∅, X}
{∅, X}⊗B
̺∈J
2
(T )
T
(T×T, ̺)
(T×T, ̺)
85
T
(X,B, )
N
0
⊂N
f, g∈L
2
(X,B, )
N\N
0
f◦T
n
, g→f, 11, g
f, g, h∈L
∞
(X,B, )
n→∞
n∈N
0
̺∈J(T )
f (T
n
x)g(x)h(T
n
y) d̺(x, y)→
f (x)h(y) d̺(x, y)
g(x) d(x).
X×X
X
X
f (T
n
x)g(x)h(T
n
y) d̺(x, y) =
f (T
n
x)g(x)Φ
∗
̺
(h◦T
n
)(x) d(x)
X×X
X
(fΦ
∗
̺
(h))◦T
n
g d
=
X
fΦ
∗
̺
(h) d
→
g d =
f⊗h d̺
g d.
X
X
X×X
X
T
S
σ
(X,B, )
(Y,C, ν)
T
S
σ
T×S
̺
(X×Y,B⊗C)
̺
X
̺
Y
̺
X
≤
̺
Y
≤ν
f (x)g(y) d̺(x, y) =
V (f )g dν,
X×Y
Y
V : L
2
(X,B, )→L
2
(Y,C, ν)
U
T
U
S
V : L
2
(X,B, )→L
2
(Y,C, ν)
f∈L
2
(X,B, )
V f≤1
V
∗
g≤1
g∈L
2
(Y,C, ν)
0≤g≤1
0≤f≤1
T = S
T
n
X
T
n
(1
A
) d = (A)
A⊂X
1
X
̺
̺
X
≤
Plik z chomika:
xyzgeo
Inne pliki z tego folderu:
cetds2000(2).pdf
(48943 KB)
spectralENCYCLOPEDIA(2).pdf
(457 KB)
times23(2).pdf
(3022 KB)
AFskrypt(3).pdf
(756 KB)
Teoria_spektralna_dla_ergodykow(3).pdf
(753 KB)
Inne foldery tego chomika:
06-DLOGLI0 Podstawy logiki i teorii mnogości (geminus)
httpalgebra.rezolwenta.eu.orgMaterialy
httpmath.uni.lodz.pl~kowalcr
httpwww.fuw.edu.pl~pmajlect.php
httpwww.math.uni.wroc.pl~newelskidydaktykalogikaBlogikaB.html
Zgłoś jeśli
naruszono regulamin