Witamina D3.doc

(234 KB) Pobierz
Witamina D3 (cholekalcyferol) jest bardzo istotnym hormonem

Witamina D3 (cholekalcyferol) jest bardzo istotnym hormonem. Witamina D występuje w roślinach w postaci D2 (ergokalcyferol) może być przetwarzana w organizmie człowieka do postaci D3.
Nasze ciała produkują ją gdy skóra zażywa kąpieli słonecznej. Promieniowanie uv katalizuje przemianę postaci cholesterolu (7-dehyd-rocholesterolu) w witaminę D3. Ponieważ u zwierząt występuje ona w ich futrze, łykają one witaminę D3 w trakcie wylizywania się.
Witamina D2 powstaje w każdej substancji organicznej poddanej promieniowaniu uv. Aktywność tej witaminy jest jednak około 10 razy mniejsza niż D3.
W latach 20-tych XX wieku po odkryciu łatwego sposobu wzbogacania pokarmu w witaminę D2 napromieniowywano promieniami uv wiele produktów spożywczych. Szpitale zaczęły bankrutować, a firmy farmaceutyczne widziały bliski koniec.
W efekcie zmieniono jednostkę miary tej witaminy i wprowadzono IU. Od tej chwili 1 mg witaminy stał się 50 000 IU. To zaczęło wyglądać groźnie kiedy ktoś suplementował 50 000 jednostek dziennie.
Może wystarczy historii D3 która zresztą jest bardzo ciekawa.
Dodam tylko że ten silny hormon nazwany błędnie witaminą ma wpływ na około 1000 różnych genów, a więc 1000 różnych procesów. Np. niski poziom tego hormonu przenosi nasz organizm w tryb „oszczędzania”.
Jak to się odbywa?
Gdzieś czytałem o niedźwiedziach, które hibernują podczas zimy. Te zwierzęta wylizują witaminę D z futra. W okresie letnim pokarmu nie brakuje i niedźwiedź nie tyje. W tym czasie oczyszcza organizm, ma szybką przemianę materii, łatwa dostępność pokarmu, metabolizm rozrzutny czyli tryb „dostatku”. Nadchodzi jesień i słońce coraz rzadziej pada na jego futro. Niedźwiedź nadal się wylizuje ale witaminy D już w futerku jest mniej, a w efekcie spada poziom wit. D. Organizm wie, że nadchodzi zima i czas przełączyć się w tryb „oszczędzania”. Niedźwiedź zaczyna tyć przygotowując się do hibernacji.
Ta historyjka z niedźwiedziem powinna zainteresować ludzi otyłych.
Ci którzy chcą hibernować zamiast żyć w pełni powinny nadal unikać słońca i używać kremów z filtrem.
No cóż takie postępowanie też ma plusy bo nakręca przemysł farmakologiczny, chemiczny, daje pracę medykom itd.
Kilka moich uwag.
Niektóre osoby szczególnie te z problemami związanymi z poziomem endorfin nie powinny przyjmować witaminy D wieczorem ponieważ ta witamina podnosi poziom endorfin w efekcie tego następnego dnia poziom endorfin będzie niższy, a to skutkować będzie pogorszonym nastrojem. Podczas snu podwzgórze kontroluje poziom między innymi serotoniny. D3 wzięta przed snem zwiększa poziom tego hormonu więc organizm stwierdza, że poziom jest wystarczający i zatrzymuje produkcję.
Należy badać poziom tej witaminy po kilku tygodniach suplementowania aby nie przekroczyć poziomu 100 - 120 ng/mL. Najczęściej w naszym klimacie ludzie mają poziom od 15 do 40 ng/mL, a więc bardzo niski.
Oprócz tego co przeczytacie poniżej dodam, że witamina D likwiduje przewlekłe stany zapalne, infekcje bez względu na ich lokalizację.
Odbudowuje kościec, leczy osteoporozę, choroby stawów itp.
W moim wypadku witamina D wyleczyła kręgosłup mimo, że lekarz twierdził iż tylko ryzykowny zabieg chirurgiczny może mi pomóc. Znikły gdzieś wypukliny, zwyrodnienia, ubytki itd.
Skończyły się wciąż powracające strasznie uciążliwe bule nadgarstków.
Ostatnie moje odkrycie to prawie całkowite wyleczenie infekcji w zatoce klinowej i sitowiu, a dzięki temu zmniejszenie się ropnia w płacie czołowym i istotne zmniejszenie obrzęku tkanki glejowej. Mam nadzieję, że wkrótce stan zapalny zostanie definitywnie wyleczony. Poprawa nastąpiła już po kilku dniach suplementowania.
Zapraszam do ciekawej lektury.


"Wpływ niedoboru witaminy D na rozwój nowotworów i chorób autoimmunologicznych

Alina Kuryłowicz, Tomasz Bednarczuk, Janusz Nauman
Zakład Badawczo-Leczniczy Endokrynologii Instytutu Medycyny Doświadczalnej i Klinicznej im. M. Mossakowskiego, Polska Akademia Nauk, Warszawa


Streszczenie
Postęp nauki spowodował, że zwiększyła się liczba chorób, których rozwój i przebieg może być uwarunkowany niedostatecznym podawaniem witaminy D. Chociaż najlepiej dotychczas udokumentowano związek niedoboru witaminy D z występowaniem chorób tkanki kostnej, to istnieją dane sugerujące, że wpływa on również na rozwój nowotworów i chorób autoimmunologicznych. W badaniach in vitro stwierdzono, że aktywny metabolit witaminy D — 1,25-dihydro-ksycholekalcyferol (1,25(OH)2D3) reguluje procesy wzrostu i różnicowania komórek, a także wpływa na funkcję komórek prezentujących antygen i limfocytów T. W badaniach in vivo zaobserwowano, że niedobór witaminy D przyspiesza rozwój chorób autoimmunologicznych i nowotworów u zwierząt. Wyniki badań epidemiologicznych sugerują, że niedobór wita¬miny D wiąże się również z częstszym występowaniem chorób autoimmunologicznych i nowotworów u ludzi. Czynnikiem decydującym o poziomie zaopatrzenia zdrowego człowieka w cholekalcyferol jest skórna synteza witaminy D. Zmiany trybu życia, zanieczyszczenia atmosferyczne, a także stosowanie filtrów słonecznych sprawiły, że współczesny Europejczyk otrzymuje zaledwie drobną część dawki promieniowania UV, którą otrzymywali jego przodkowie. Według najnowszych badań epidemiologicznych stężenia witaminy D w surowicy u osób zamieszkujących tereny położone w szerokościach geograficznych powyżej 34° N/S — w tym również w Polsce — są niższe od optymalnych. W niniejszej pracy dokonano przeglądu badań dotyczących potencjalnej roli witaminy D w rozwoju nowotworów i cho¬rób autoimmunologicznych, a także przedstawiono aktualne wytyczne na temat kryteriów rozpoznawania niedoborów witaminy D i zalecanej suplementacji.

CHOLEKALCYFEROL (WITAMINA D3)


Wstęp
Witaminę D3 (czyli cholekalcyferol, nazywana tu w skró¬cie witaminą D) postrzegano przede wszystkim jako czynnik regulujący gospodarkę wapniowo-fosforanową i metabolizm tkanki kostnej. Wyniki badań przeprowa¬dzonych w ciągu ostatnich lat sprawiły, że zmienia się pogląd na rolę pochodnych witaminy D w utrzymy¬waniu homeostazy wielu tkanek. Obecnie wiadomo, że aktywny metabolit witaminy D — 1,25-dihydroksycho¬lekalcyferol (ryc. 1) wpływa, między innymi na procesy wzrostu i różnicowania komórek, sekrecję niektórych hormonów, a także na regulację funkcji reprodukcyj¬nych. Odkrycie jądrowego receptora witaminy D (VDR, vitamin D receptor), a następnie stwierdzenie jego obec¬ności w komórkach immunokompetentnych i w komór¬kach linii nowotworowych, zapoczątkowało badania nad rolą pochodnych witaminy D w rozwoju i przebie¬gu chorób autoimmunologicznych i nowotworów.
Metabolizm i mechanizm działania witaminy D

Metabolizm witaminy D
Cholekalcyferol to związek z grupy sekosteroli, który do organizmu człowieka jest dostarczany wraz z dietą lub powstaje wskutek bioaktywacji pochodnej choleste-rolu (7-dehydrocholekalcyferolu) w skórze, pod wpły-wem promieniowania słonecznego (l = 280-315 nm). Następnie witamina D podlega kolejnym reakcjom hydroksylacji, z których pierwsza, w pozycji 25, ma miejsce w wątrobie. Reakcję tę katalizuje prawdopo-dobnie nie jeden enzym, a zespól 25-hydroksylaz wita-miny D, który tworzą białka cytochromowe (CYP, cyto-chrome protein): CYP27A1, CYP3A4 oraz CYP2R1 [2]. W wyniku wątrobowej hydroksylacji powstaje 25-hydro-ksycholekalcyferol (25(OH)D3) — główny krążący w or-ganizmie człowieka metabolit witaminy D. Stężenie 25(OH)D3 jest wykorzystywane w przesiewowej oce¬nie zaopatrzenia organizmu w witaminę D.
Kolejne hydroksylacje witaminy D mają miejsce w pozycjach 1 i/lub 24, w wyniku czego powstają odpo-wiednio 1,25-dihydroksycholekalcyferol i 24,25-dihy-droksycholekalcyferol (ryc. 1). Kluczowym enzymem dla syntezy 1,25-dihydroksycholekalcyferolu (1,25(OH)2D3) — aktywnej biologicznie formy witaminy D jest 1a-hydroksylaza (CYP27B1). Podstawowym miejscem eks-presji CYP27B1 są komórki kanalika proksymalnego nerki, ale jej obecność stwierdza się również między innymi: w tkance kostnej, płucach, wątrobie, łożysku, skórze oraz w makrofagach. Działanie 1,25(OH)2D3 w tych tkankach ma przede wszystkim charakter lokalny, auto- i parakrynny.
Drugim produktem przemian 25(OH)D3 jest 24,25--dihydroksycholekalcyferol, którego syntezę katalizuje 24-hydroksylaza witaminy D (CYP24) obecna praktycz¬nie we wszystkich komórkach, na które działa witami-na D. Funkcja 24,25(OH)2D3 nie jest w pełni poznana, ale badania ostatnich lat pozwoliły stwierdzić, że bie¬rze on udział między innymi w regulacji wzrostu chrząstki i przebudowy tkanki kostnej [3]. Substratem dla CYP24 jest również 1,25(OH)2D3, a hydroksylacja w pozycji 24 stanowi pierwszy etap degradacji pochod-nych cholekalcyferolu. Regulatorem działania obu hydro-ksylaz (CYP27B1 i CYP24) jest, na zasadzie sprzężenia zwrotnego, sam 1,25(OH)2D3 (hamowanie aktywności CYP27B1, aktywacja CYP24). W procesie tym pośred-niczą także jony wapniowe, fosforanowe, parathormon, kalcytonina i inne hormony (w tym glukokortykoste-roidy, prolaktyna, somatotropina, trijodotyronina). Sko-ordynowane działanie CYP27B1 i CYP24 odpowiada za prawidłowe stężenie metabolitów witaminy D.
Zaledwie 0,04% 25(OH)D3 i 0,4% 1,25(OH)D3 krążą-cych we krwi jest w stanie „wolnym" (niezwiązanym z białkami transportującymi). Około 15% związane jest nie-specyficznie przez albuminy, natomiast większość — oko¬ło 85% — przez specyficzny nośnik globulinowy — biał¬ko wiążące witaminę D (DBP, vitamin D-binding protein), co zapewnia ich stabilność i dostępność komórkową [4].
Mechanizm działania witaminy D
Działanie 1,25(OH)2D3 na komórki docelowe odbywa się zarówno w mechanizmie pozagenomowym, jak i poprzez wpływ na genom. Pozagenomowe działanie witaminy D wiąże się z aktywacją kinaz tyrozynowych z rodziny Src (których geny wykazują homologię do genu v-src wirusa mięsaka Rous [Rous sarcoma virus]), a następnie uruchomieniem kaskady kinazy białkowej C lub kinazy białkowej aktywowanej mitogenem (MAP, mitogen activated protein kinase). Mechanizmy aktywacji kinazy Src przez witaminę D nie są w pełni poznane i są obecnie przedmiotem badań [5].
Oddziaływanie genomowe odbywa się za pośred-nictwem wspomnianego już wcześniej receptora jądro-wego witaminy D (VDR, vitamin D receptor) i w ten spo¬sób pochodne cholekalcyferolu wpływają zarówno na homeostazę wapniową, jak i na ogólnoustrojowe pro¬cesy wzrostu, dojrzewania i różnicowania komórek.
Receptor jądrowy witaminy D, podobnie jak recep¬tor dla trijodotyroniny, czy receptor kwasu retinowe-go, należy do II klasy receptorów jądrowych. Działa jako zależny od liganda czynnik transkrypcyjny, który po związaniu odpowiednich sekwencji (VDRE, vitamin D responsive elements) w promotorach genów docelowych, reguluje ich ekspresję.
Po połączeniu receptora z pochodnymi cholekalcy-ferolu (ryc. 2) dochodzi do heterodimeryzacji z recepto-rem dla retinoidu X (RXR, retinoid X receptor), związania z VDRE, przyłączenia innych białek koaktywujących i korepresorowych, a wreszcie utworzenia preinicjacyj-nego kompleksu transkrypcyjnego [6].
Obecność VDR stwierdzono w jelicie, nerce, ko¬ściach i przytarczycach, czyli tkankach związanych z gospodarką mineralną, jak i w wielu innych tkankach, w tym między innymi w skórze, jelicie grubym, prosta-cie, sutku, mięśniach szkieletowych, mózgu, co dało początek badaniom dotyczącym tak zwanych ,,niekla-sycznych" lub ,,niekalcemicznych" działań witaminy D.

Witamina D a nowotwory
Jednym z pierwszych doniesień dotyczących niekalce-micznych mechanizmów działania pochodnych chole-kalcyferolu było stwierdzenie, że 1,25(OH)2D3 hamuje proliferację i stymuluje różnicowanie w komórkach li¬nii białaczkowych M1 i HL-60 [7]. Podobne obserwacje dotyczyły linii komórkowych pochodzących z nowotwo¬rów prostaty, jelita grubego, sutka, płuc i czerniaka, w których stwierdzono ekspresję genu VDR [8-10]. Odkrycia te zapoczątkowały badania nad mechanizmem antynowotworowego działania witaminy D i pozwalają sądzić, że możliwe będzie wykorzystanie cholekalcyferolu i jego analogów w terapii nowotworów.


Mechanizmy antynowotworowego działania witaminy D

Hamowanie proliferacji
Mechanizm hamowania proliferacji przez pochodne cholekalcyferolu może być różny w zależności od ro-dzaju komórek i tkanek. Jednym z procesów warunku-jących przechodzenie komórek z fazy G1 do S cyklu komórkowego jest fosforylacja białka retinoblastoma (Rb), co powoduje uwolnienie czynników transkryp-cyjnych z rodziny E2F aktywujących transkrypcję wie¬lu genów związanych z postępem cyklu komórkowe¬go, w tym cyklin E i A. Fosforylacja Rb jest katalizowa¬na przez cykliny G1 i zależne od nich kinazy (CDK, cy¬klin dependent kinase), których aktywność jest z kolei hamowana przez białko p21. W badaniach prowadzo-nych na komórkach linii lymph node, carcinoma, prostate (LNCaP) [11] oraz na linii komórek białaczkowych U937 [12] zaobserwowano, że 1,25(OH)2D3 połączony z VDR, wiąże się z miejscem regulatorowym w promotorze genu p21, zwiększając jego ekspresję, co prowadzi do hamowania kinaz CDK, braku fosforylacji Rb i zaha-mowania cyklu komórkowego w fazie G1 (ryc. 3). Do
Rycina 3. Hamowanie proliferacji komórek przez witaminę D. Jednym z procesów warunkujących przechodzenie komórek z fazy G1 do S cyklu komórkowego jest fosforylacja białka retinoblastoma (Rb), co powoduje uwolnienie czynników transkrypcyjnych aktywujących szereg genów związanych z postępem cyklu komórkowego. Fosforylacja Rb katalizowana jest przez cykliny G1 i zależne od nich kinazy (CDK, cyklin dependent kinase), których aktywność jest z kolei hamowana przez białka p21 i p27. Witamina D (VD) połączona ze swoim receptorem (VDR), wiąże się z miejscami regulatorowymi w promotorach genów p21i p27, zwiększając ich ekspresję, co prowadzi do hamowania kinaz CDK, braku fosforylacji Rb i zahamowania cyklu komórkowego w fazie G1 innych inhibitorów CDK, których ekspresja jest regu-lowana przez 1,25(OH)2D3 należy białko p27. W bada-niach prowadzonych na mysich embrionalnych fibro-blastach (MEFs, mouse embrionic fibroblasts), w których dokonano knockoutu genu p27 stwierdzono, że anty-proliferacyjne działanie cholekalcyferolu jest upośle-dzone [13].
Knockout genu Rb, nie powoduje jednak całkowite-go zahamowania proliferacji pod wpływem 1,25(OH)2D3, tak więc brak fosforylacji Rb nie jest prawdopodobnie jedynym mechanizmem antyproliferacyjnego działania witaminy D. Natomiast w komórkach pozbawionych dodatkowo genów kodujących dwa inne białka z ro¬dziny retinoblastoma: p107 i p130, stwierdzono całko¬wity brak wrażliwości na antyproliferacyjne działanie 1,25(OH)2D3, co sugeruje, że pochodne cholekalcyferolu oddziaływają prawdopodobnie na całą grupę tych białek.
Do innych opisywanych mechanizmów regulacji cyklu komórkowego przez 1,25(OH)2D3 należy hamo-wanie sygnałów mitogennych przekazywanych przez czynniki wzrostu, w tym między innymi receptor dla nabłonkowego czynnika wzrostu (EGF, epithelial growth factor) [15], oraz pobudzanie szlaków transformującego czynnika wzrostu b (TGF-b, transforming growth factor b) i białek wiążących insulinopodobny czynnik wzrostu (IGF-BP, insulin-like growth factor binding protein), na przy-kład IGF-BP3 [16]. Wykazano również, że 1,25(OH)2D3 może hamować aktywność prostaglandyn, które dzia¬łają jako stymulatory wzrostu komórkowego. W bada-niach prowadzonych na linii komórek raka prostaty LNCaP stwierdzono, że 1,25(OH)2D3 może zarówno ograniczać syntezę PGE2 (poprzez hamowanie cyklo-oksygenazy 2), jak i zwiększać jej inaktywację (przez stymulację aktywności dehydrogenazy prostaglandy-nowej 15-PGDH, przekształcającej prostaglandyny do pochodnych ketonowych) [17].
Choć opisano wiele mechanizmów, na drodze któ¬rych 1,25(OH)2D3 mógłby potencjalnie hamować cykl komórkowy, dotychczas nie przeprowadzono przeko-nujących badań wyjaśniających, który z wymienionych tu szlaków odgrywa zasadniczą rolę w regulacji podzia-łów komórkowych. Możliwe jest, że w różnych typach komórek działają różne mechanizmy.

Aktywacja apoptozy
Zdolność 1,25(OH)2D3 do pobudzania apoptozy wyka-zano w różnych komórkach nowotworowych, między innymi w raku sutka, jelita grubego, prostaty, jednak dokładny mechanizm tego działania nie został jeszcze poznany [18]. Jednym ze szlaków aktywacji apoptozy pobudzanym przez pochodne witaminy D jest hamo-wanie ekspresji protoonkogenu bcl-2, co stwierdzono w komórkach raka sutka i liniach przewlekłej białaczki limfatycznej [19, 20]. W komórkach inwazyjnego raka sutka (SUM-159PT), poddanych działaniu 1,25(OH)2D3, zaobserwowano również zwiększenie ekspresji pro-apoptycznego białka Bax [21]. Ponadto, w komórkach linii LNCaP (z raka prostaty) oraz MCF-7 (z raka sutka) stwierdzono, że pochodne witaminy D mogą powodo¬wać uwalnianie cytochromu c z mitochondriów w me-chanizmie niezależnym od kaspaz.
Inne proponowane mechanizmy antynowotworowego działania witaminy D
W badaniach in vitro przeprowadzonych na liniach ko-mórkowych pochodzących z raka sutka i płuc, jak i w badaniach in vivo na zwierzęcych modelach nowo-tworów prostaty i pęcherza stwierdzono, że 1,25(OH)2D3 zmniejsza inwazyjność nowotworów [22-24]. Wśród proponowanych mechanizmów ,,antyinwazyjnego" działania witaminy D wymienia się: hamowanie aktyw-ności metaloproteaz i proteaz serynowych, wzrost eks¬presji kadheryny E i spadek ekspresji integryn a6 i b4.
Innym opisywanym mechanizmem antynowotwo-rowego działania 1,25(OH)2D3 jest hamowanie angio-genezy, obserwowane między innymi w raku prostaty [25]. Jednym z czynników pobudzających angiogene-zę jest interleukina 8 (IL-8, interleukin-8). W komórkach raka prostaty stwierdzono, że 1,25(OH)2D3, prawdopo-dobnie poprzez interakcję z podjednostką p65 czynni-ka jądrowego kB (NF-kB, nuclear factor kB), hamuje ak-tywację transkrypcji genu IL-8.
Warunkiem skutecznego działania witaminy D jest obecność w tkance jej aktywnego, niezmutowanego receptora. Obecność VDR stwierdzono w wielu ko-mórkach nowotworowych. W niektórych guzach, w tym w raku podstawnokomórkowym skóry i raku szyjki macicy, stwierdzono wzrost ekspresji VDR w porównaniu z tkankami zdrowymi (prawidłowymi keratynocytami i komórkami nabłonka szyjki macicy) [26, 27]. Zaobserwowano także różnice w ekspresji VDR w zależności od stopnia zróżnicowania guza, na przykład w raku sutka ekspresja genu VDR była zna¬cząco niższa w komórkach słabiej zróżnicowanych [28], czego nie potwierdziły jednak badania dotyczące innych nowotworów [29]. Ponadto w locus VDR, stwierdzo¬no obecność ponad 200 polimorfizmów (czyli mutacji, których częstość jest większa niż 1%), co świadczy, że jest to gen „dynamiczny" i „młody" ewolucyjnie [30]. W badaniach funkcjonalnych stwierdzono, że poszcze-gólne polimorfizmy mogą wpływać na aktywność trans-krypcyjną genu VDR, stabilność transkryptu (mRNA), zdolność wiązania ligandów przez receptor, a także na odpowiedź na leczenie pochodnymi cholekalcyferolu, preparatami wapnia i bifosfonianami [31-34]. Opisano również związek poszczególnych polimorfizmów genu VDR z rozwojem nowotworów u człowieka, w tym mię¬dzy innymi raka prostaty i sutka [35, 36].
W wielu typach nowotworów zaobserwowano me-chanizmy, które mają ograniczyć antyproliferacyjne i proapoptotyczne działanie 1,25(OH)2D3. Wśród opi-sywanych mechanizmów można wymienić:
— zmniejszenie wewnątrzkomórkowego stężenia 1,25(OH)2D3 przez wzmożoną transkrypcję genu CYP24, do którego amplifikacji dochodzi między innymi w raku sutka [37];
— fosforylację seryny w pozycji 260 RXR, co blokuje interakcję i heterodimeryzację z VDR w keratyno-
cytach [38];
— wzrost ekspresji korepresorów, na przykład media¬tora receptora kwasu retinowego i receptora trijo-dotyroniny (SMRT, silencing mediator of retinoid and thyroid receptors) w raku prostaty.

Niedobór witaminy D
a występowanie nowotworów
Wyniki badań epidemiologicznych przeprowadzonych w ciągu ostatnich 20 lat sugerują, że zapadalność na wiele nowotworów, w tym między innymi na raka jeli-ta grubego, jajnika, sutka i prostaty, jest odwrotnie pro-porcjonalna do szerokości geograficznej i stężenia wi-taminy D w surowicy. Już w 1941 roku Apperly zaob-serwował, że w populacji osób białych zwiększona eks-pozycja na światło słoneczne koreluje ze zmniejszoną śmiertelnością z powodu wyżej wymienionych nowo-tworów, co potwierdzono w badaniach współczesnych [40]. Stwierdzono również, że u osób ze stężeniem 25(OH)D3 wyższym niż 50 nmol/l (20 ng/ml), ryzyko rozwoju nowotworów prostaty i jelita grubego jest mniejsze o 30-50%.
Hipotezę o związku niedoboru witaminy D z roz-wojem nowotworów potwierdzają wyniki doświadczeń na modelach zwierzęcych. W badaniach przeprowadzo-nych na myszach Balb/c, którym wszczepiono komórki linii raka jelita grubego (MC-26), u zwierząt, u których wywołano niedobór witaminy D (stężenie 25(OH)D3 niższe niż 5 ng/ml) stwierdzono szybszy rozwój guzów (średnio o 80%) w stosunku do zwierząt z prawidło-wymi stężeniami 25(OH)D3 [43]. Z kolei wyniki badań na myszach z knockoutem genu VDR sugerują, że nie-dobór witaminy D nie wywołuje rozwoju nowotworów per se, a raczej stanowi czynnik promujący nowotwo-rzenie — u zwierząt tych nie stwierdzono spontanicz-nego rozwoju nowotworów, natomiast obserwowano zwiększoną podatność na rozwój między innymi raka sutka, skóry i białaczek pod wpływem znanych kance-rogenów i onkogenów [44].
W badaniach epidemiologicznych przeprowadzo-nych w populacji Stanów Zjednoczonych, w których dodatkowo uwzględniono wpływ innych czynników ryzyka rozwoju nowotworów, takich jak między inny-mi: spożycie alkoholu, palenie tytoniu, status ekono-miczny i zanieczyszczenie środowiska [45] stwierdzo¬no, że niezależnie od działania innych potencjalnych kancerogenów, zapadalność na raka jelita grubego, żołądka, płuc i sutka była odwrotnie proporcjonalna do ekspozycji na promieniowanie UVB [40]. Podobnych wyników dostarczyły badania przeprowadzone w la-tach 1989-1991 w Europie.
Prowadzi się również badania epidemiologiczne dotyczące związku niedoborów witaminy D z przeży-walnością w przebiegu chorób nowotworowych. Ist-nieją pojedyncze doniesienia sugerujące, że wśród osób zapadających na choroby nowotworowe w sezonie let-nio-jesiennym, kiedy jest większa ekspozycja na świa¬tło słoneczne i tym samym aktywniejsza synteza wita¬miny D w skórze, stwierdza się dłuższą przeżywalność w przebiegu nowotworów sutka, jelita grubego i pro¬staty, w stosunku do osób zdiagnozowanych w okresie zimowo-wiosennym [47]. Wśród chorych operowanych z powodu nowotworów płuc, zaobserwowano wyższy odsetek przeżyć 5-letnich u osób z prawidłową zawar-tością witaminy D w diecie (72%), w stosunku do osób z niedoborami (29%) [48]. Obecnie zarówno w Stanach Zjednoczonych, jak i w Europie prowadzi się badania epidemiologiczne mające na celu zbadanie związku między ekspozycją na promieniowanie UVB a przeżywal-nością w przebiegu nowotworów (EUROCARE, SEER).

Zastosowanie witaminy D w terapii nowotworów
Wyniki badań potwierdzających antyproliferacyjne i proapoptotyczne właściwości cholekalcyferolu dają nadzieję na możliwość wykorzystania tych związków w terapii nowotworów. Poważnym ograniczeniem sto-sowania pochodnych witaminy D w monoterapii cho-rób nowotworowych jest ich działanie kalcemiczne, dlatego w większości przypadków znajdują one zasto-sowanie w terapii łączonej, co pozwala na użycie mniej-szych dawek. W warunkach in vitro, jak i in vivo opisa¬no bowiem wiele potencjalnych interakcji z lekami sto-sowanymi w leczeniu chorób rozrostowych, w wyniku których dochodzi do potencjalizacji działania pochod-nych witaminy D, między innymi z deksametazonem, taksanami, docetakselem i paclitakselem, pochodnymi platyny, tamoksyfenem i retinoidami [9]. Stwierdzono również, że analogi witaminy D, na drodze różnych mechanizmów (np. poprzez indukcję ekspresji p21), mogą zwiększać radioczułość, na przykład komórek raka prostaty (LNCaP) i sutka (MCF-7) [49, 50].
W pilotażowych badaniach klinicznych przeprowa-dzonych na 7 chorych z rakiem prostaty, u których za-stosowano 1,25(OH)2D3 w dawce 0,5-2,5 jg/d przez okres 6-15 miesięcy, u wszystkich stwierdzono obniże¬nie stężenia swoistego antygenu sterczowego (PSA, prostate specific antigen), przy czym u 6 pacjentów był on znamienny statystycznie [51]. W innym badaniu, 37 chorym z niewrażliwym na androgeny rakiem pro¬staty, podawano w 1. dobie 1,25(OH)2D3 w dawce 0,5 jg, w 2. dobie — docetaksel (36 mg/m2) i leczenie to powta¬rzano przez kolejnych 6 tygodni. Podczas badania cho¬rzy pozostawali na diecie zawierającej 400-500 mg wap-nia/d. Po 8 tygodniach od wdrożenia leczenia u 30 (81%) chorych uzyskano znamienne statystycznie obniżenia stężenia PSA i jest to odsetek wyższy niż w grupie cho-rych otrzymujących wyłącznie docetaksel [52]. Te obie-cujące wyniki wstępnych obserwacji klinicznych były podstawą do zaplanowania wieloośrodkowych badań przeprowadzonych metodą podwójnie ślepej próby nad zastosowaniem pochodnych cholekalcyferolu w terapii łączonej z docetakselem w raku sutka i trzust¬ki (OHSU Cancer Institute). Trwają również badania nad zastosowaniem 1,25(OH)2D3 z deksametazonem, pacli-takselem i karboplatyną [53].
W związku z ograniczeniem w stosowaniu 1,25(OH)2D3 jakie stanowi hiperkalcemia, trwają intensywne prace nad syntezą analogów witaminy D, równie skutecznych w swoim działaniu antynowotworowym, a o zmniejszo¬nym potencjale kalcemicznym. Dotychczas poznano kil¬kaset pochodnych cholekalcyferolu, z których część jest już w fazie badań klinicznych, na przykład kalcipotriol, który podawany miejscowo znajduje zastosowanie w leczeniu skórnych przerzutów raka sutka [54].

Witamina D a choroby autoimmunologiczne


Wpływ witaminy D na układ immunologiczny
Badania nad wpływem 1,25-dihydroksycholekalcyfero-lu na układ immunologiczny dotyczą głównie komó-rek prezentujących antygen oraz limfocytów T.

Badania nad wpływem 1,25(OH)2D3 na komórki prezentujące antygen
W badaniach dotyczących działania pochodnych wita-miny D na komórki prezentujące antygen oceniano wpływ 1,25(OH)2D3 na różnicowanie, dojrzewanie i funkcję komórek dendrytycznych.
W warunkach in vitro ludzkie monocyty krwi ob-wodowej różnicują się do niedojrzałych komórek den-drytycznych pod wpływem interleukiny 4 (IL-4, inter-leukin-4) oraz czynnika stymulującego tworzenie kolo-nii granulocytów i makrofagów (GM-CSF, granulocyte-macrophages colony stimulating factor) [55], czemu towarzyszy wzrost ekspresji cząsteczki kostymulującej 1a (CD1a, cluster of differentiation). Badając metodą cy-tometrii przepływowej hodowle monocytów poddane działaniu 1,25(OH)2D3, nie obserwowano wzrostu eks¬presji CD1a pod wpływem IL-4 i GM-CSF [56]. Dojrze-waniu komórek dendrytycznych towarzyszy natomiast zmniejszenie ekspresji cząsteczki CD1a, a wzrost eks¬presji innych cząsteczek kostymulujących, między innymi CD40, CD83, CD86. W warunkach doświadczal¬nych podobne zmiany stwierdza się, poddając niedoj-rzałe komórki dendrytyczne na przykład działaniu liposacharydu (LPS, liposacharid) [57]. W hodowli nie-dojrzałych komórek dendrytycznych z LPS, po doda-niu 1,25(OH)2D3, obserwowano około 50-procentowe zmniejszenie ekspresji cząsteczek CD40, CD83, CD86 w porównaniu z komórkami kontrolnymi, co świadczy o zahamowaniu ich dojrzewania [56].
W badaniach przeprowadzonych na hodowlach dojrzałych komórek dendrytycznych aktywowanych ligandem CD40 stwierdzono wzrost stężenia cytokin, w tym interleukiny 10 (IL-10, interleukine-10) oraz inter-leukiny 12 (IL-12, interleukine-12) [58]. Z kolei po doda¬niu do hodowli 1,25(OH)2D3 zaobserwowano obniże-nie stężenia IL-12 (cytokiny stymulującej między inny¬mi powstawanie limfocytów T pomocniczych 1 [Th1, T helper 1]) oraz 7-krotny wzrost syntezy IL-10 (która m.in. bierze udział w hamowaniu wytwarzania cytokin prozapalnych, w tym interferonu g [IFN-g, interferon g]
oraz IL-2) [56].
Niedawno poznano niektóre z molekularnych me-chanizmów w jakich witamina D może wpływać na działanie komórek prezentujących antygen. W bada-niach nad regulacją promotora genu GM-CSF, na pod-stawie testów opóźnienia migracji w żelu, stwierdzo¬no, że sekwencja wiążąca VDR nakłada się częściowo na sekwencję wiążącą czynnik jądrowy AT (NF-AT, nuclear factor of activated T-cells). W testach koimmuno-precypitacji DNA zaobserwowano, że w obecności 1,25(OH)2D3 monomer VDR może blokować miejsce wią-zania NF-AT [59]. Natomiast w badaniach nad regulacją promotora genu IL-12 stwierdzono, że w obecności 1,25(OH)2D3 heterodimer VDR/RXR może blokować miejsce wiązania czynnika jądrowego KB (NF-KB) [60].
W badaniach in vivo zaobserwowano, że po poda¬niu 1,25(OH)2D3 u 50% badanych myszy wydłuża się czas utrzymania przeszczepów wysp trzustkowych. Na powierzchni komórek dendrytycznych pochodzących od zwierząt po przeszczepie poddanych działaniu 1,25(OH)2D3 stwierdzono niski poziom ekspresji cząste-czek kostymulujących (CD40, CD80, CD86), w porów-naniu ze zwierzętami kontrolnymi.

Badania nad wpływem 1,25(OH)2D3 na limfocyty T
W testach proliferacji jednojądrzastych komórek krwi obwodowej stwierdzono, że pod wpływem 1,25(OH)2D3 dochodzi do hamowania indukowanej antygenem (KLH, keyhole limpet hemocyanin) proliferacji limfocytów T, czego nie obserwowano w hodowlach limfocytów sty-mulowanych mitogenami (konkawaliną A i fitohe-maglutyniną) [62].
Badając ekspresję genów cytokin w hodowlach lim-focytów T krwi obwodowej stymulowanych fitohema-glutyniną, a następnie poddanych działaniu 1,25(OH)2D3, zaobserwowano, zarówno na poziomie mRNA, jak i białka, zmniejszenie ekspresji genów IL-2 i IFN-g [63, 64]. Natomiast wyniki badań oceniających wpływ 1,25(OH)2D3 na syntezę IL-4 (cytokiny wydzielanej głównie przez limfocyty Th2) są niejednoznaczne. W badaniu przepro-wadzonym na hodowlach limfocytów T CD4+ stymu-lowanych syntetycznym peptydem OVA (fragmentem owalbuminy) i poddanych działaniu 1,25(OH)2D3 od-notowywano wzrost stężenia IL-4 [65]. Natomiast w badaniu oceniającym profil cytokin wydzielanych przez hodowlę limfocytów T CD4+ poddanych stymulacji za pomocą przeciwciał anty-CD3 i anty-CD28, po dodaniu 1,25(OH)2D3 obserwowano obniżenie stężenia IL-4 [66]. Z kolei w hodowli limfocytów T krwi obwo-dowej stymulowanych fitohemaglutyniną, a następnie IL-2 (pobudzającą różnicowanie limfocytów T w kie-runku limfocytów cytotoksycznych), po dodaniu 1,25(OH)2D3 nie stwierdzono wzrostu syntezy IL-4, w porównaniu z hodowlą kontrolną, stymulowaną sa¬mym mitogenem [67].
Częściowo poznano już molekularny mechanizm, w jakim 1,25(OH)2D3 może regulować ekspresję genów cytokin wydzielanych przez limfocyty T. W badaniach nad regulacją promotora genu IL-2, w testach koimmu-noprecypitacji DNA zaobserwowano, że w obecności 1,25(OH)2D3 heterodimer VDR/RXR może blokować miejsce wiązania czynnika transkrypcyjnego NF-AT, a także czynnika AP-1 (activating protein) [68]. Natomiast w promotorze genu IFN-g stwierdzono obecność nega-tywnego VDRE (nVDRE), który po związaniu komplek-su 1,25(OH)2D3-VDR/RXR hamuje transkrypcję genu [69].

Niedobór witaminy D a występowanie chorób autoimmunologicznych
Pod wpływem różnorodnych czynników środowisko-wych, u osób z odpowiednią predyspozycją genetyczną może dojść do przełamania tolerancji względem wła-snych antygenów i rozwoju procesów autoimmunolo-gicznych [70].
Niedobór witaminy D, poprzez zachwianie równo-wagi immunologicznej, może stanowić czynnik środo-wiskowy sprzyjający rozwojowi zjawisk autoimmuno-logicznych. Potwierdzają to badania przeprowadzone na zwierzęcych modelach chorób autoimmunologicznych, na przykład: zaobserwowano, że niedobór cholekalcy-ferolu w diecie przyspiesza u myszy zimmunizowanych antygenami mieliny (np.: MOG35-55) wystąpienie obja-wów doświadczalnego alergicznego zapalenia mózgu i rdzenia (EAE, experimental allergic encephalomyelitis), które stanowi model stwardnienia rozsianego [71].
Zaobserwowano również, że podawanie 1,25(OH)2D3 (i jego analogów) może wpływać na przebieg chorób autoimmunologicznych, a nawet zapobiegać ich wystą-pieniu. Podanie 1,25(OH)2D3 myszom w ciągu 14 dni od immunizacji kolagenem typu II, całkowicie zapobie¬ga rozwojowi zapalenia stawów (CIA, collagen induced arthritis -- model reumatoidalnego zapalenia stawów) [72]. Natomiast suplementacja 1,25(OH)2D3 w diecie u myszy z CIA zapobiega rozwojowi ciężkich objawów zapalenia. Podobnie u myszy NOD (nonobese diabetic — myszy, u których, wskutek autoimmunologicznego zapalenia wysp trzustkowych, dochodzi do rozwoju cukrzycy insulinozależnej) zaobserwowano, że poda¬nie 1,25(OH)2D3 przed ukończeniem 3. tygodnia życia zapobiega wystąpieniu choroby [73]. Natomiast w ba-daniu immunohistochemicznym wysp trzustkowych pochodzących od dorosłych zwierząt chorych na cu-krzycę, które otrzymywały analog 1,25(OH)2D3 (Ro 26-2198) opisywano ograniczenie (o ok. 50%) nacieku za-palnego w porównaniu ze zwierzętami kontrolnymi otrzymującymi placebo [74]. Z kolei w badaniu histolo-gicznym wycinków rdzenia kręgowego zwierząt z EAE, którym podawano analog witaminy D (Ro 63-2023), obserwowano ograniczenie nacieku limfocytarnego i zmniejszenie liczby ognisk demielinizacji [75].
Wyniki badań epidemiologicznych sugerują, że nie-dobór cholekalcyferolu w diecie wiąże się z częstszym występowaniem chorób autoimmunologicznych u lu-dzi, a właściwa suplementacja preparatami witaminy D może stanowić czynnik ochronny [76]. Zaobserwo¬wano, że w populacjach rasy kaukaskiej zachorowal¬ność na stwardnienie rozsiane jest wyższa w rejonach o mniejszym nasłonecznieniu, a przebieg choroby od-powiada sezonowym zmianom w stężeniach 25(OH)D3 (zaostrzenia w sezonie wiosennym, kiedy stwierdza się najniższe stężenie 25(OH)D3 w surowicy) [77, 78]. Obser-wacje te potwierdzono w badaniu prospektywnym, w którym wykazano, że dzienne spożycie witaminy D w dawce większej niż 400 jm./dobę zmniejsza ryzyko zachorowania na stwardnienie rozsiane (ryzyko względne [RR, relative risk] — 0,59) [79]. Podobne wy¬niki uzyskano, badając związek pomiędzy zawartością witaminy D w diecie a częstością występowania reu-matoidalnego zapalenia stawów (RR = 0,67) [80]. Wy-kazano również, że niedobór witaminy D w ciągu pierwszych 12 miesięcy życia stanowi czynnik ryzyka zachorowania na cukrzycę typu 1 (RR = 3,0) [81].
Należy jednak nadmienić, że podobnie jak w przy-padku nowotworów, u zwierząt doświadczalnych, u których dokonano delecji/knockoutu genu vdr (co teo-retycznie powoduje wyłączenie działania 1,25(OH)2D3) nie stwierdza się tendencji do spontanicznego rozwo¬ju chorób autoimmunologicznych. Wyłączenie genu vdr może jednak wpłynąć na przebieg tych chorób, o czym świadczą wyniki badań przeprowadzonych między innymi na myszach z knockoutem genu IL-10, u któ¬rych dochodzi do spontanicznego rozwoju nieswo¬istych zapalnych chorób jelit. U zwierząt tych dokona¬nie dodatkowo delecji genu vdr, zaostrza objawy cho¬roby i 100% zwierząt umiera przed ukończeniem 8. ty¬godnia życia [82]. Prawdopodobnie więc niedobór witaminy D nie jest kluczowym, a jednym z wielu czyn¬ników sprzyjających powstawaniu zjawisk autoimmu-nologicznych. Związek z podatnością do rozwoju cho-rób autoimmunologicznych mogą mieć również poli-morfizmy genu VDR, o czym świadczą wyniki badań asocjacyjnych przeprowadzonych w różnych popula-cjach, między innymi stwardnieniem rozsianym, reu-matoidalnym zapaleniem stawów, cukrzycą typu 1, a w populacji polskiej również z rozwojem choroby Gra-vesa-Basedowa [83-86].
Zastosowanie witaminy D w terapii chorób o podłożu immunologicznym
Obecnie, pochodne witaminy D znajdują zastosowa¬nie w leczeniu łuszczycy, przewlekłej zapalnej choro¬by skóry prawdopodobnie o podłożu autoimmunolo-gicznym. Pierwsze doniesienie na ten temat dotyczy chorego, u którego po doustnym podaniu 1a-hydrok-sycholekalcyferolu (1a(OH)D3) w celu leczenia osteopo-rozy, stwierdzono remisję zmian łuszczycowych [87]. W następnych badaniach klinicznych zaobserwowano, że stosowanie pochodnych witaminy D zarówno zew-nętrznie (1,25(OH)2D3, 1,24(OH)2D3, kalcipotriol), jak i systemowo (1a(OH)D3, 1,25(OH)2D3) po kilku tygo-dniach terapii powoduje poprawę kliniczną leczonych zmian u około 70-80% chorych (ocena według skal To-tal Severity Score [TSS], Psoriasis Area Severity Index [PASI]) [88]. W badaniach eksperymentalnych na ho-dowlach keratynocytów zaobserwowano między inny¬mi, że w komórkach poddanych działaniu 1,25(OH)2D3 dochodzi do ograniczenia inkorporacji znakowanych prekursorów syntezy DNA — 3H-tymidyny i 5-bromo--2-deoksyurydyny — co świadczy o ograniczeniu proli-feracji. Po dodaniu 1,25(OH)2D3 do hodowli keratyno-cytów obserwowano również wzrost tworzenia tak zwanych zrogowaciałych kopert (cornified envelopes), których obecność jest jednym ze wskaźników zróżnico¬wania [89]. Ponadto opisywano wpływ pochodnych wi-taminy D na profil wydzielanych w zmianach łuszczyco¬wych cytokin: w biopsjach pobranych ze zmian łuszczy-cowych od chorych leczonych analogiem witaminy D (kal-cipotrien) zaobserwowano wzrost stężenia IL-10 (o 57%), a zmniejszenie stężenia IL-8 (o 70%), w porównaniu z grupą chorych, którym podawano placebo [90].
Stosowanie pochodnych cholekalcyferolu w leczeniu innych chorób o podłożu autoimmunologicznym, jak dotąd ma charakter eksperymentalny. Znane są pojedyn-cze doniesienia o próbach leczenia osteoporozy w prze-biegu reumatoidalnego zapalenia stawów za pomocą 1a-hydroksycholekalcyferolu czy też o podawaniu 1,25(OH)2D3 chorym z obniżoną gęstością mineralną tkan-ki kostnej w przebiegu choroby Gravesa-Basedowa.

Niedobory witaminy D
— zalecenia i suplementacja
W ostatnich latach, wraz ze wzrostem wiedzy na temat roli pochodnych cholekalcyferolu w utrzymaniu home-ostazy organizmów, zmieniono kryteria oceny zaopa-trzenia w witaminę D. Według najnowszych zaleceń, wartości stężeń 25(OH)D3 poniżej 25 nmol/l (10 ng/ml) definiowane są jako ciężki niedobór witaminy D (defi-ciency), skutkujący rozwojem krzywicy, osteomalacji, miopatii i nadczynności przytarczyc. Stężenia w grani-cach 25-50 nmol/l (10-20 ng/ml) określane są jako stan ,,nieadekwatnego zaopatrzenia organizmu w witami-nę D" (insufficiency), charakteryzujący się podwyższo¬nymi wartościami PTH i zmniejszonym wchłanianiem wapnia w przewodzie pokarmowym, czasami również obniżoną gęstością mineralną kości. Wartości stężeń
25(OH)D3 w zakresie 50-100 nmol/l (20-40 ng/ml), to
według obecnych zaleceń hipowitaminoza, której od-powiada niedobór witaminy D w magazynach. Prawi-dłowe stężenia 25(OH)D3 (adequacy) mieszczą się w za¬kresie 100-250 nmol/l (40-100 ng/ml), a wyższe warto¬ści oznaczają już zatrucie witaminą D [92].
Opublikowano wiele badań, których wyniki pozwa-lają przypuszczać, że stężenia witaminy D w surowicy u osób zamieszkujących tereny położone w szeroko-ściach geograficznych powyżej 34° N/S — w tym w Sta¬nach Zjednoczonych, Kanadzie i w wielu krajach euro-pejskich — są niższe od optymalnych [93]. W szeroko-ściach geograficznych odpowiadających warunkom polskim odpowiednie zaopatrzenie w witaminę D można osiągnąć w okresie od marca do września, eks-ponując na przykład dłonie, ramiona i twarz na czas wynoszący 25% wymaganego do wywołania lekkiego zaróżowienia skóry (1 dawka rumieniowa, różna dla poszczególnych karnacji). W okresie jesienno-zimowym zaleca się doustną suplementację. Tymczasem w bada¬niu przeprowadzonym w 2002 roku, dotyczącym dzien-nego spożycia witaminy D w grupie dziewcząt 12-let-nich oraz starszych kobiet w wieku 70-75 lat, w 4 pań-stwach europejskich: Danii, Finlandii, Irlandii i Polsce [94] stwierdzono, że niezależnie od badanego kraju, dzien¬ne spożycie witaminy D było niższe od zalecanego, przy czym najniższe wartości stwierdzono w Polsce (3,1 mg/d u dziewcząt i 3,8 mg/d u starszych kobiet) i w Danii (odpowiednio 2,4 mg/d i 3,4 mg/d). W Polsce stwierdzono również najniższą częstość stosowania su-plementów: 23% wśród starszych kobiet i 11% wśród dziewcząt.
Wśród czynników, które należy uwzględnić przy wyodrębnianiu osób narażonych na niedobory witami-ny D, znajdują się zarówno te, które wpływają na jej przy-swajanie z przewodu pokarmowego (wiek, dieta), jak i na syntezę skórną. Według profesora Michaela F. Ho-licka z Boston University School of Medicine, czynnikiem decydującym o poziomie zaopatrzenia zdrowego czło-wieka w cholekalcyferol jest skórna synteza witaminy D. Czynniki wpływające na wydajność skórnej syntezy witaminy D można podzielić na zewnętrzne i wewnętrz¬ne. Do czynników zewnętrznych zalicza się: szerokość geograficzną, porę dnia i roku, zachmurzenie, grubość warstwy ozonowej (która absorbuje UVB) i zanieczysz¬czenia atmosfery. Do czynników wewnętrznych:

— rodzaj skóry (zawarta w skórze melanina pochłania promieniowanie UV i wydajność syntezy witaminy D jest odwrotnie proporcjonalna do zawartości me-laniny);
— wiek (wraz z wiekiem zmniejsza się zawartość 7-de-hydrocholekalcyferolu w keratynocytach);
— stosowanie filtrów słonecznych (np. zastosowanie kremu z filtrem nr 15 zmniejsza skórną syntezę wi-taminy D o 99,9%);
— czynniki behawioralne [9].
U osób zamieszkałych na terenach o wyraźnej se-zonowości, a co za tym idzie rocznej zmienności nasło-necznienia, stwierdza się sezonowe fluktuacje w stęże-niach 25(OH)D3 w surowicy, przy czym maksymalne stężenia witaminy D obserwuje się około 2 miesiące po okresie największej ekspozycji na promieniowanie sło-neczne. Biorąc jednocześnie pod uwagę fakt, że pro-mieniowanie UV jest podstawowym czynnikiem śro-dowiskowym sprzyjającym rozwojowi nowotworów skóry, zaleca się krótkie, regularne ekspozycje na dzia-łanie światła słonecznego, które są również najbardziej skuteczne z punktu widzenia wydajności syntezy wi-taminy D [95].
Dotychczas brakuje badań, które potwierdziłyby możliwość całkowitej kompensacji braku skórnej syn-tezy witaminy D przez jej odpowiednie dostarczanie w diecie lub przez stosowanie suplementów [96]. Nale¬ży tu nadmienić, że powszechnie jako suplement sto¬suje się witaminę D2, której przyswajalność odbiega od przyswajalności cholekalcyferolu [97]. Według najnow-szych zaleceń w sezonie zimowym dzienne zalecane spożycie witaminy D, które pozwala na utrzymanie pra-widłowego stężenia 25(OH)D3 w surowicy wynosi oko-ło 50 mg, co odpowiada 2000 jm. (1 jm. = 0,025 mg wita-miny D). Są to wartości w...

Zgłoś jeśli naruszono regulamin